неудобства им нет, да и голов-то у них нет. Какое же затруднение для них яйцеобразность их пространства? - Ах, да, впрочем! Устрицы не имеют рук; писать книг не могут поэтому. А для Гельмгольца вся сущность "разумной жизни" - писание книг и статей о математике. Понятно: о "яйцеобразном пространстве двух измерений" не стоит и толковать: разумным существам двух измерений не стоит жить в нем.

Но "сферическое пространство двух измерений" - очень хороший сорт пространства.

Третий прекрасный сорт - "псевдосферическое пространство двух измерений". Его вид? - Поверхность кольца, сделанного из проволоки, согнутой и спаянной концами. Изобретатель этого пространства - известный, по словам Гельмгольца,- известный! - Чем же именно? глупостью? Итальянский математик Бельтрами.- Я надеюсь, эта его глупость была и у него,- как, я надеюсь того же и о Гельмгольце,- лишь мимолетным расстройством мыслей, и известен он не этою своею глупостью, а какими-нибудь дельными работами.- В одном отношении, впрочем, очень прискорбна эта, хоть и мимолетная, глупость! Образумившись, Бельтрами должен был бы отступиться от нее. А он этого, по-видимому, не сделал. Итак: он еще не вполне исцелился. И она продолжает давить, как свинцовая дурацкая шапка, его голову. Да; впасть в глупость легко невежде, одолеваемому тщеславием. Исцелится трудно. Потому-то и непростительна коренная глупость тщеславных невежд: глупость оставаться невеждами, когда им хочется философской славы. Поучились бы;авось, и тщеславие исчезло бы вместе с невежеством. А то лишь стыдят себя и позорят свою специальность своими дикими фантазиями.

"Псевдосферическую поверхность", по словам Гельмгольца, имеют и некоторые другие фигуры, кроме фигуры проволоки, согнутой в кольцо. Он перечисляет эти разные формы псевдосферической поверхности. Все они формы очень элементарные. Были ль даны каждой из них особые формулы до Бельтрами? - Не знаю. Но даже для меня ясно: все эти формулы очень легкие видоизменения формул линий второй степени. Например: поверхность кольца из круглой проволоки имеет своими формулами очень легкие видоизменения формул цилиндрической поверхности прямого цилиндра; то есть формулы поверхности того кольца очень легко и просто выводятся из формул круга. И я полагаю: если у Бельтрами в той его глупости есть какие-нибудь формулы, не находящиеся в трактатах или статьях Эйлера и Лагранжа, то лишь потому не напечатали этих формул Эйлер и Лагранж, что находили не заслуживающими печати, очевидными для всякого порядочного математика короллариями других формул.

Но так ли, или нет,- для сущности дела все равно. Пусть Бельтрами в той своей глупости дал какие-нибудь новые формулы, не совсем маловажные. Все-таки неизмеримо глуп общий характер обеих его работ, на которые ссылается Гельмгольц. Это видно по самым заглавиям их.- "Опыт истолкования не-Эвклидовой геометрии"; и - "Основная теория пространств постоянной кривизны".- Я рад был бы свалить всю вину глупости на Гельмгольца, предположивши, что он вложил сам дикую фантазию свою в работы Бельтрами, имевшие лишь дельную, разумную цель найти формулы для тех поверхностей: кольцеобразной, двуседловидной и бокалообразной. Важны ли, не важны ли эти формулы, новы ли они, или не новы в науке,- было бы все равно: цель работ,дельная; и если автор доискивался решений, уж данных другими, лишь неизвестных ему, это могло бы оказаться лишь случайным его незнанием, и я рад признавать все такие случаи извинительными. Но - нет! - Бельтрами сочинял "не-Эвклидову
страница 8
Чернышевский Н.Г.   Письмо сыновьям А Н и М Н Чернышевским